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Minimal energy shapes of closed, elastic shells with 12 pentagonal disclinations introduced in otherwise
hexagonally coordinated crystalline lattice are studied. The geometry and the total energy of shells are studied
as a function of the elastic properties of the material they are made of. Particular emphasis is put on the
buckling transition of the shells, that is, a strong preference of the shell shapes to “buckle out” in spatial
regions close to the pentagonal disclinations for a certain range of the elastic parameters of the problem. The
transition effectively increases the mean square aspherity of shapes, making them look more like an icosahe-
dron rather than a sphere, which is a preferred shape prior to the onset of the transition. The properties of the
buckling transition are studied in cases when (i) the total volume enclosed by the elastic shell has to be fixed
and when (ii) there is an internal pressure acting on the shell. This may be related to the maturation process in
nonenveloped dsDNA viruses, where the insertion of the genetic material in a preformed protein shell (viral
coating) may effectively impose the fixed volume and/or pressure constraint. Several scenarios that may
explain the experimentally observed feature of mature viruses being more aspherical (facetted) from their
immature precursors are discussed, and predictions for the elastic properties of viral coatings are obtained on

the basis of the presented studies.
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I. INTRODUCTION

Several articles have appeared recently that aim to de-
scribe the virus structure, shape, and stability by using physi-
cal principles. Virus-related research seems to be particularly
appealing to physicists since viruses exhibit many features
that are reminiscent of well known and thoroughly studied
phenomena in “more traditional” physical systems. For ex-
ample, 50 years ago Fraenkel-Conrat demonstrated that in-
fectious viral particles [tobacco mosaic viruses (TMV)] can
be reassembled from two solutions, one containing the viral
genetic material (RNA) and the other its coat (or capsid)
proteins (a short historical overview of research on reconsti-
tution of TMV can be found in Ref. [1]). The reassembly of
TMYV proceeds without any special external impetus—it is
spontaneous. The fact that viruses can be reassembled in in
vitro conditions suggests that their shape and symmetry
should be a result of free energy minimization, a concept
familiar from equilibrium thermodynamics. This line of
thought has recently been successfully applied in the expla-
nation of the physical origin of the icosahedral symmetry of
viruses (see below) and other possible shapes and geometries
that might be adopted by viruses [2,3]. The production of a
functional molecular machine from its constituent, possibly
engineered molecular components is a dream of nanotech-
nologists. Such an approach to “molecular engineering” does
not require precise molecular positioning, since correct as-
sembly takes place spontaneously due to specific architecture
of the molecular constituents and pronounced anisotropy of
their mutual interactions; hence, the term self-assembly is
often used in a nanotechnological context.

The structural symmetry and shape of virus coating is in
itself intriguing. There have been attempts to draw parallels
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between the symmetry of viruses, Penrose tilings [4], and
quasicrystals [5]. Most viruses have a structure with topol-
ogy equal to that of triangulated icosahedra (see Fig. 1). In-
dividual proteins that make the viral coating (approximated
by triangles in Fig. 1) are organized in units called capsom-
ers that consist of five (pentamers) or six protein units (hex-
amers). Most viruses contain only 12 pentamers and remain-
ing capsomers are hexamers [6]. Pentamers are located at 12
vertices of an icosahedron. Such structures are very similar
to giant fullerene molecules [7]. It is also easy to see a struc-
tural relationship between the virus and an icosahedral geo-
desic dome [8]. One of the simplest virus structures (7=3,
see below), characteristic of small viruses (e.g., cucumber
mosaic virus [9]), contains 12 pentamers and 20 hexamers
and is topologically equivalent to a famous buckminster-
fullerene molecule (Cg) [10]. Icosahedral symmetry that is
characteristic of viral shapes is also frequently found in
ground state configurations of atomic clusters (see, e.g., Ref.

FIG. 1. (Color online) Idealized T=7 (h=1, k=2) virus struc-
ture. The structure consists of 12 pentamers (at the vertices of an
icosahedron) and 60 hexamers. Note how the neighboring pentam-
ers can be connected with two subsequent translations along two
distinct spherical geodesics.
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[11]). Poligonalizaton of a sphere with pentagons and hexa-
gons is often described in terms of Caspar-Klug quasiequiva-
lent construction [12]. Within this framework, viruses are
characterized by the so-called T number, which describes the
order of a poligonalization. The T number can be written as
T=h>+k*>+hk, where h and k are non-negative integers. The
meaning of these integers can be quickly grasped from Fig.
1. Note how the two neighboring pentamers in the structure
displayed in Fig. 1 can be connected through two subsequent
translations along two distinct spherical geodesics. The mag-
nitudes of these translations are non-negative integer mul-
tiples (k2 and k) of distances between the nearest-neighboring
capsomers, so that the structure in Fig. 1 can be characterized
by h=1 and k=2, or T=7. The total number of capsomeric
units in a virus of particular 7 number symmetry is 107+2.
Twelve of these units are pentamers and remaining 10(T
—1) are hexamers [6].

The shapes of viral capsids have been recently studied
within the framework of nonlinear theory of elastic shells
[13,14]. These studies have produced rather interesting re-
sults, and excellent fits to experimentally determined virus
shapes have been obtained [13]. The most important feature
of the shell shapes that these studies predict is the buckling
transition. The buckling transition has been earlier predicted
for planar triangular meshes with a pentagonal or heptagonal
defect introduced in their structure [15]. As a consequence of
minimization of the total energy, which includes both
stretching and bending contributions, the crystalline mesh
buckles in a conical shape in the vicinity of a pentagonal
defect (or disclination). This transition is observed only
above the critical value of the so-called Foppl-von Kdrmdn
number () [15], which is an effective parameter combining
the mesh radius, two-dimensional Young’s modulus (Y), and
bending rigidity (x). This parameter uniquely describes the
shape of continuous shells. A pentagonal “defect” (pentamer)
is characteristic of a virus structure, and viral coating can
thus be viewed as a continuous shell with 12 pentagonal
disclinations introduced in otherwise hexagonally coordi-
nated crystalline structure (each vertex in the “regular” mesh
has six nearest neighbors). The two studies [13,14] have
reached the conclusion that the remnants of buckling transi-
tions survive in the more complex geometry of a spherical
(closed) shell with 12 pentagonal disclinations. This transi-
tion is not as sharp as in the case of a (two-dimensional)
disk; nevertheless, an observable buckling transition of the
shell was found for Foppl-von Kdarman (FvK) numbers be-
tween about y=100 and 1000. This effect has been related to
the features of the experimentally determined virus shapes,
and it can correctly describe the global trend of larger viruses
being more faceted (or buckled) than smaller ones [16]. One
of the interesting propositions put forth by the authors of
Ref. [13] is that the process of virus maturation can be de-
scribed in part by the buckling transition of viral capsids.
Virus maturation is the process through which the assembled
viral particles become fully functional. Its precise evolution
depends on the type (or family) of the virus in question, in
particular, whether the viruses are enveloped by the cell
membrane proteins or not. For a large class of nonenveloped
viruses [e.g., those containing the double stranded DNA (ds-
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DNA) in their mature form [16]], the maturation consists of
incorporation of the genetic material in a preassembled,
empty protein capsid (the so-called precursor capsid or pro-
capsid). During the maturation process the capsid typically
swells, and mature capsids are larger from their precursor
counterparts. A faceted shape is often a characteristic of a
mature virus, whereas (immature) precursor capsids have a
more spherical shape. This transition in shape has been de-
scribed within a framework of the elastic theory of shells in
terms of the change of the FvK number [13]—the FvK num-
ber in mature viral shells is larger than in their respective
precursor capsids. However, during the buckling transition of
elastic shells, the volume enclosed by the shell decreases,
whereas for most viruses, the mature viral capsids enclose
larger volume from the immature precursor capsids [17,18].

The aim of this paper is to investigate whether the buck-
ling transition in elastic shells survives in more restrictive
circumstances, in particular, under the constraint of volume
conservation and when the internal pressure acting on the
shell is nonvanishing. These constraints may be thought of as
the simplest possible introduction of the capsid-DNA/RNA
interaction in the problem of virus shapes. Thus, an investi-
gation of the characteristics of buckling transition in more
general conditions should be of use for a more thorough
understanding of viral capsid shapes in their immature and
mature forms.

The paper is organized as follows. Section II briefly dis-
cusses the model of elasticity and minimal energy shapes of
shells with 12 pentagonal disclinations subjected to a con-
straint of fixed volume. Section III contains the results per-
taining to empty shells, i.e., without the imposition of the
fixed enclosed volume or constant pressure constraints. This
section deals with the subject already treated in Refs.
[13,14], and its main purpose is to clearly demonstrate that
the shell volume decreases during the buckling transition. In
Sec. IV, the minimal energy shell shapes with the imposed
constraint of fixed enclosed volume are studied. It is shown
that the buckling transition survives in that case also, al-
though the buckled shapes are less aspherical than the ones
obtained without the volume conservation constraint. Section
V contains results regarding the buckling transition of shells
subjected to constant environmental pressure (the difference
in pressures in the inner and outer space of the shell is fixed).
Section VI relates the results of the article to the virus matu-
ration process. Several possible scenarios that reproduce the
experimentally observed fact of mature viruses being more
aspherical and facetted as compared to their immature pre-
cursors are discussed. Predictions for the parameters charac-
terizing the elastic response of viral coatings are given. Sec-
tion VII briefly summarizes the results and concludes the

paper.

II. A MODEL OF ELASTIC SHELLS WITH THE
CONSTRAINTS OF FIXED ENCLOSED VOLUME AND
CONSTANT PRESSURE

I start from the model of elasticity described in Refs.
[13-15]. Briefly, the shell surface is discretized in triangular
plaquettes and the Hamiltonian describing such a system is
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where indices i and j (I and J) describe the two neighboring
triangle vertices (surfaces) located at r; and r > respectively, €
is the scale of energy related to a change of the distance
between the two neighboring vertices (stretching), while & is
the scale of energy related to a change of dihedral angle
(bending) between the two neighboring triangles (those shar-
ing a side) whose normal vectors are denoted by n. The
equilibrium distance between the two neighboring vertices is
a, and it is assumed that the neighboring triangular
plaquettes prefer to lie in the same plane, i.e., the preferred
angle between their normal vectors is zero. The authors of
Ref. [14] considered also the case of nonzero preferred cur-
vature of the surface which can be simply introduced in the
above Hamiltonian [ 14]. For surfaces containing a very large
number of triangular plaquettes, the discrete Hamiltonian be-
comes reliable for the description of continuous elastic me-
dium described by Young’s modulus Y=2€/v3, Poisson’s
ratio v=1/3, bending rigidity x=\3%/2, and Gaussian rigid-
ity kg=—4/3 [13].

Finding a minimum-energy state (or a shape) of a problem
defined by Eq. (1) consists of a multidimensional search for
a minimum of the Hamiltonian function H(r,,...,ry) that
depends on 3N coordinates, where N is the number of mesh
vertices. This search is unconstrained which means that there
are no relationships between the variables r;,...,ry that
have to be obeyed.

A. Enclosed volume constraint

It is possible to do a constrained search for the minimum
of Eq. (1), specifying additionally some relations that the
variables (or a shape) have to obey. The volume of a shell
can be expressed in terms of the coordinates of the mesh
vertices as

Vv

1
> |rpp - (15 X 1p5) (2)

=g[ .

where r;;,r;,, and r; 5 are the three vertices of the triangle /
in (counter)clockwise order. A search for a minimum of Eq.
(1) with the independent variables (vertex coordinates) addi-
tionally fulfilling V=V, where V, is a fixed quantity, should
result in a shape that minimizes the function H(r;,...,ry) in
the subspace of all possible shapes that enclose volume V.
The volume constraint is implemented in the numerical pro-
cedure using the so-called penalized version of the Hamil-
tonian [19], where an additional, quadratic penalty term of
the form

Hy= (V= V)’ 3)

is added to the original Hamiltonian in Eq. (1), so that the
new Hamiltonian (H,) is given by H,=H+H,. Ideally, a
penalty parameter A should be extremely large (and positive)
to strictly impose the volume constraint. The problem of
finding a minimum of a strongly constrained Hamiltonian is
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solved using the so-called continuation technique [19]. A
small value of N\ is chosen initially, which enables a quick
numerical convergence of the shape. This shape is used as an
initial guess for the Hamiltonian in which N\ is ten times
larger (A— 10\), and the procedure is repeated until \ is
large enough so that the volume constraint is fulfilled to a
machine precision.

B. Constant internal pressure

The constant internal pressure (p) is introduced in the
problem by adding to the shell Hamiltonian a term pV, so
that the new Hamiltonian of the problem (H,) is given by

H,=H+pV. 4)

This introduces an additional force AF; on the ith vertex
which is given by AF;=—pdV/or;.

III. EMPTY ICOSAHEDRAL SHELLS

A word of caution concerning the 7" numbers of triangu-
lated shells used by the authors of Refs. [13,14], and Caspar-
Klug 7 numbers pertaining to viral shells is in order here. It
should be understood that these two are not the same. For
example, for the idealized virus structure in Fig. 1, the
Caspar-Klug T number is 7 (h=1, k=2), while the 7 number
characteristic of a kind of triangulation (without reference to
pentamer/hexamer structures [13,14]) is 21 (h=4, k=1; this
can be obtained by simply following a path from one pen-
tamer to its neighboring pentamer with integer steps along
the sides of the mesh triangles and not through the centers of
the pentamer/hexamer structures). Of course, the two 7 num-
bers become the same if every vertex in the triangular mesh
corresponds to the center of a capsomer. In what follows, I
reserve the term “7 number” for the characterization of the
shell triangulation, while the term “Caspar-Klug T number”
is used for the characterization of 7 numbers in the context in
which they were originally introduced.

Icosahedral shells with various 7 numbers were con-
structed, and their total energy (E, which includes both
stretching and bending contributions) as a function of bend-
ing modulus, x was calculated. Other parameters of the
Hamiltonian in Eq. (1) were been kept fixed (a=1, e=1).
The initial shape for k— % was set up [typically a sphere
with a radius of a\V5TV3/7/2, see Eq. (10)], and the mini-
mum energy shape was obtained by an efficient implemen-
tation of the conjugate gradient method described in Ref.
[20]. The resulting shape is used as an initial guess for the
situation in which « is decreased, and this procedure is re-
peated until k becomes rather small. As demonstrated by the
authors of Ref. [13], the shape and energy of continuous
shells (large T numbers) are unique functions of the FvK
number, which can be expressed as

y= <R>2X, (5)
K

where (R) is the mean radius of the shell given as
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FIG. 2. (Color online) Shell energy as a function of the Foppl—
von Kdrmdn number for several 7 numbers as denoted in the figure
(T=100, 400, 625, 1225, 3025).

N
1
(R)= Nz |r; =, (6)

and ry is a geometrical center of the shape, r0=2§ilri/ N. The
total shell energy as a function of FvK number is shown in
Fig. 2 for shells with different 7 numbers.

It can be seen that the continuum regime concerning the
total energy of the shell is reached rather slowly and large T
numbers are needed in this respect. This is especially true in
the region of large FvK numbers (y>20 000). Shells with
smaller 7 numbers can reliably predict the continuum shapes
in the region 0<<y<<20 000.

Based on quite general considerations, the authors of Ref.
[13] concluded that the energy of a closed triangular shell
(without the enclosed volume conservation constraint) with
12 pentagonal disclinations situated at the icosahedron verti-
ces should behave as

E {637/7h+D, Y<W%

= | 6B[1 + In(y/y,)] + D, ™

K Y= Yo

where D is a constant contribution to the energy due to the
background curvature of a sphere, B is a numerical constant
which could be interpreted as a pentagonal disclination core
energy and which should be reasonably close to /3, and v,
is a critical FvK number indicating approximately the region
in which the buckling transition takes place. For the (un-
buckled) shapes described by y<1y,, the total energy is ap-
proximately given by the sum of elastic stretching energy of
12 “unbuckled” pentagonal disclinations (6B+y/%,) and by
the “background” elastic energy, D. There is no buckling
contribution related to pentagonal disclinations other than the
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FIG. 3. (Color online) Mean square aspherity of minimal energy
shapes as a function of the Foppl-von Kdrman number for several T
numbers as denoted in the figure (7=100, 400, 625, 1225, 3025).

overall, mean background curvature. For the buckled shapes
(y>1,), the functional dependence of the energy related to
disclinations profoundly changes, and one has to account for
the energies resulting from the bending of the conical section
in the vicinity of each of the disclinations. This results in a
logarithmic dependence of energy on 7. Further details can
be found in Refs. [13—15]. The data for the largest 7 number
(T=3025; h=55, k=0) were fitted to the analytical forms in
Eq. (7), with B,D, and v, treated as fit parameters. I have
found that the best fit to the numerical results in the region of
ve€{0,31000] is obtained with B=1.29, v,=264, and D
=8.51. These numbers are in good agreement with the results
reported in Ref. [14] (B=1.27, v,=260 [21]), but vy, is two
times larger from the value found in Ref. [13]. However, this
value is not really “critical,” since none of the characteristics
of the shape undergo a discontinuous change at 7y, (see Fig.
3).

Mean square aspherities of shapes defined as in Ref. [13],

(ARY) 1< (Ir;=ro|-(R))?
(R)? NE

NE )

i=1

are plotted in Fig. 3 as a function of vy for the same choice of
T numbers as in Fig. 2.

The shape geometries apparently converge with the T
number faster than the total energies (compare Fig. 2 and 3).
Note that the buckling transition directly transcribes into in-
creased mean square aspherities of the minimal energy
shapes. The results are very similar to those presented in Ref.

[13].
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FIG. 4. (Color online) Volume enclosed by the shell as a func-
tion of the Foppl-von Kdrman number for two values of the T
number as denoted in the figure (7=100, 1225).

It is of interest to examine how the volume enclosed by
the shell changes during the buckling transition. Rough esti-
mates can be easily obtained. For small FvK numbers, the
minimal energy shapes are very nearly spherical, while for
extremely large FvK numbers, the shapes are nearly perfect
icosahedra. Assuming that the shape area is the same in both
limits, the volume ratio should be close to

V(y— =)

T ~0.91. 9)

In fact, V(y—0) can be well approximated as
a3 .
V(y— 0) =~ —=(5T\3)¥2. (10)
6V

The above expression neglects the elastic strain in the spheri-
cal structure and assumes that all the triangular faces of the
mesh have equal areas of a*\3/4, which is, of course, un-
true, especially in the regions close to pentagonal disclina-
tions. Nevertheless, the numerically calculated value of
V(y—0) was found to be only about 0.7 % smaller from the
estimate in Eq. (10). Calculated changes of volume during
buckling transitions are presented in Fig. 4. It can be seen
that only about half of the maximum volume reduction pre-
dicted by Eq. (9) takes place during the buckling transition
(for 100<y<<2000), while the remaining part of the reduc-
tion takes place in the icosahedron’s ridge-sharpening regime
(for y>10°) studied in Refs. [22,23] and discussed also in
Refs. [13,14].
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FIG. 5. (Color online) Comparison of shell energies with and
without the volume conservation constraint as a function of the
Foppl-von Karman number for 7=400. (a) Enclosed volumes are
constrained to values larger than (or equal to) V(y—0); V=V,
=V(y—0), V=Vy=1.1V(y—0), and V=Vy=1.2V(y—0) as de-
noted in the figure. (b) Enclosed volumes are constrained to
values smaller than V(y—0); V=V;,=0.95V(y—0) and V=V,
=0.91V(y—0) as denoted in the figure. The energy of uncon-
strained shells is also shown for comparison.

IV. BUCKLING TRANSITION IN ICOSAHEDRAL SHELLS
SUBJECTED TO THE FIXED ENCLOSED VOLUME
CONSTRAINT

The model physical system that should be helpful in com-
prehending the results of this section is that of a formed shell
with k—o, y—0 (a sphere) into which an incompressible
liquid is poured. The bending modulus of the shell is de-
creased and the change in energy and shape are monitored
during the process. This picture is useful when the con-
strained volume is larger than the one in the limit k—, y
— 0, and the incompressible liquid is a rough approximation
of the viral genetic material.

For the constrained shapes, FvK number is again calcu-
lated as in Eq. (5), although its meaning as the sole param-
eter that uniquely describes the shell shape [13] is obviously
lost. The results of the calculation of shell energies with and
without the enclosed volume constraint are presented in Fig.
5. Volumes V that are larger than V(y—0) seem to be of
interest to the virus maturation process. To complete the pic-
ture of buckling transition in elastic shells (without respect to
viruses), I have also considered the constraints to the total
volume that are smaller than V(y—0).

The energies presented in Fig. 5 correspond only to the
energy contained by the shell. For more realistic application
of a shell theory to the viral shapes, one should also include
the contribution of the capsid-DNA/RNA interaction in the
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FIG. 6. (Color online) Mean square aspherity of unconstrained
and constrained shells as a function of the Foppl-von Kdrman num-
ber for 7=400. The volume constraints studied are the same as in
Fig. 5, and (a) and (b) display the results for constraints V=V,
=V(y—0) and V=V, < V(y—0), respectively.

total energy. It can be easily observed from Fig. 5(a) that the
aspherical shell (viral) shapes become energetically very ex-
pensive for FVvK numbers larger than about 10%, and it is thus
unlikely that shapes characterized by such large FvK num-
bers will be adopted by mature viral shells. This statement is
corroborated by the fits of structures of bacteriophage HK97
and L-A yeast virus to the shapes predicted by Hamiltonian
in Eq. (1), which produced values of y=1480 and y=547,
respectively, [13] which are in the region of k values where
the volume conservation constraint does not increase the
shell energy significantly (see Fig. 5). A critique of and limi-
tations to this line of thinking and other possible explana-
tions of the buckling transitions are presented in Sec. VI.

Note that the shell energies for volume constraints V
=V,<V(y—0) [Fig. 5(b)] do not increase significantly
above those obtained without the volume constraint [com-
pare energy scales in Fig. 5(a) and 5(b)]. Note that the vol-
ume constraint of V=V,=0.95V(y—0)=V(y=107) is not a
constraint at the point when y= 107, since at that point the
volume adopted by the unconstrained shell equals the con-
strained volume (see Fig. 4). Thus, the energy curves for the
unconstrained shape and the shape constrained to V=V,
=0.95V(y—0) touch at y=107.

Figure 6 displays how the mean square aspherity changes
during the buckling transition for the constrained and uncon-
strained shapes. When the constrained volume is larger than
V(y—0) [Fig. 6(a)], the final aspherities that are reached
through the transition are notably lower in shapes with the
fixed enclosed volume constraint, the more so the larger the
fixed volume. The ridge-sharpening transition [22,23] seems
to be suppressed, at least within the range of parameters
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FIG. 7. (Color online) The buckled shapes for the Hamiltonian
parameters denoted by A [(a) no volume constraint), B [(b) V=V,
=V(y—0)], C [(¢); V=Vy=1.1V(y—0)] and D [(d); V=V,
=0.91V(y—0)] in Figs. 5 and 6. The faces are colored according to
their total energy. The brighter (yellow) triangles correspond to
faces with large energy, while those of small total energy are darker
(blue). Somewhat different lightning and shading of the shape was
applied in (d), and the contrast was enhanced in order to emphasize
the appearance of depressions in the shell, enclosed also by dotted
lines.

studied here. When the constrained volume is smaller than
V(y—0) [Fig. 6(b)], the shell shape changes more dramati-
cally in the buckling transition, which can be seen by ex-
tremely large aspherities that are characteristic of shapes
constrained to V=V,=0.91V(y—0). The aspherities reached
by these shapes cannot be explained by the flattening of the
faces of the icosahedron, since the mean square aspherity of
the perfect icosahedron is 0.002 598 3. A clue for such large
aspherities can be found in Fig. 7 that shows buckled shapes
for large FvK numbers. These shapes correspond to points
denoted by A, B, C, and D in Figs. 5 and 6, i.e., they are
calculated for the unconstrained case (A), in the case where
volumes are constrained to V=V,=V(y—0) (B), V=V,
=1.1V(y—0) (C), and V=V,=0.91V(y—0) (D). The trian-
gular faces in the shapes are colored according to the total
energy that they contain. This was calculated as one half of
the energy contained in the three edges of a particular tri-
angle. Note how the distribution of energy contained in the
shell changes depending on whether the enclosed volume
conservation constraint is imposed or not. For unconstrained
shells, the largest energy is contained in the vicinity of the
pentagonal disclinations (similar effect was observed in Ref.
[25]), while the opposite is observed for the shapes in which
the constrained volume is larger than V(y—0). In that case
the largest energy is contained in the regions between the
disclinations that “bulge out” to satisfy the volume conser-
vation constraint [Fig. 7(c)]. Practically all of this energy is
of the stretching type, since the distances between the points
on the shell (vertices) have to be larger from their equilib-
rium values in order to satisfy the constraint. This may have
some implications to bursting of viral capsids, in particular,
the points at which the cracks in the capsid initiate [25].
Particularly interesting is the shape obtained for V=V,
=0.91V(y—0) [Fig. 7(d)]. Some shading is applied in the
depiction of this shape [unlike in shapes displayed in Figs.
7(a)-7(c)] in order to clearly emphasize its main
characteristic—a depression, collapse, or crumpling of the
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FIG. 8. (Color online) The normalized area of shells with con-

strained volumes as denoted in the figure as a function of the
Foppl-von Karmén number (7=400).

shell localized in between the disclinations. This is the rea-
son for the extremely large aspherities observed in Fig. 6(b).
Note that the highest energies in this case are localized in
vicinity of the pentagonal disclinations, since the shell col-
lapse does not require a large change in the stretching energy.

The total area (S) of the shapes also increases during the
buckling transition under the constraint of fixed volume. The
normalized area, S(367)~'3V-23 as a function of the FvK
number is shown in Fig. 8. Note that for a perfect sphere, the
normalized area as defined here is 1, and for icosahedron, it
is 1.0646.

V. BUCKLING TRANSITION IN ICOSAHEDRAL SHELLS
WITH THE CONSTANT INTERNAL PRESSURE

Before studying the effects of pressure on the icosahedral
shells, it should be decided in what effective units the pres-
sure is to be measured. The quantity that was kept fixed in
the calculations presented thus far was €, that is, the scale of
energy related to stretching. The internal pressure necessarily
induced stretching of the shell, and thus, the pressure should
be expressed in units of € divided by some spatial scale. It
seems reasonable to chose the radius of the shell in the limit
when k— % ,y—0, and p=0 as the relevant spatial scale.
The radius of the shell in this limit is denoted as R, and the
pressure is thus measured in the units of €/R,. I demonstrate
that in the continuum limit of shells this indeed produces
appropriate results which coincide for the shells of different
(but still large) T numbers.

The effects of pressure that acts from the inside of the
shell (negative pressures) on the shell energy is shown in
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FIG. 9. (Color online) The shell energy as a function of the
Foppl-von Karman number for five different values of pressure, as
denoted in the figure, that is acting on the shell from its inside. The
calculations represented by the lines were performed for 7=400
shells, and squares and circles represent the results of the calcula-
tion for 7=625 and T=1225 shells, respectively. The shell energies
without applied pressure (p=0) are shown for comparison. The in-
set displays the change in volume (measured in RS units, see text) of
the 7=400 shell subjected to the internal pressure of p=
—0.0828€/R,, as a function of the Foppl-von Karman number.

Fig. 9. This can also be thought of as a situation in which the
internal pressure in the shell is larger from the surrounding
pressure. The quantity shown on the ordinate axis of Fig. 9 is
the shell energy, that is the value obtained when pV is sub-
tracted from the total Hamiltonian [see Eq. (4)]. Similar
trends are observed here as in Fig. 5(a). For large internal
pressures, the shell energies increase significantly above the
values that are obtained when there is no pressure acting
on the shell. The lines in the figure were calculated
for T=400 shells. The radius of this shell in the limit
when k—o©,y—0 is Ry,=16.5682a [see Eq. (1)], so
the pressures shown in Fig. 9 can also be expressed as
-0.002¢/a (-0.0331€/Ry), —0.005e/a (—0.0828€/R,),
-0.01€/a(-0.166€/R;), and —0.02€/a (-0.331€/R;). The
circles in Fig. 9 represent the results obtained for the T
=625 shell with the applied pressure p=-0.008003€/a
=-0.166€/R,), since Ry=20.7035a for the T=625 shell. Note
that these results coincide with those obtained for the T
=400 shell, which confirms both that the continuum limit is
reached and the appropriateness of the units chosen for pres-
sure. The same holds for the T=1225 shell [the squares in
Fig. 9], for which Ry=28.9738a. When the constant internal
pressure is applied to the shell, as the FvK number changes,
so does the volume enclosed by the shell. The inset in Fig. 9
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FIG. 10. (Color online) Mean square aspherities of the shells
subjected to constant internal pressures, as denoted in the graph, as
a function of the Foppl-von Kdrman number (7=400).

displays the change of the enclosed volume (measured in RS
units) with the FvK number for p=-0.0828¢/R, (T=400).
Note that the enclosed volume in the limit k— %, y—0 is
not 4r/3~4.189 but larger (about 4.6), which is simply be-
cause the effective internal force (pressure) acts on the shell
and increases its volume. For all the pressures studied, the
volume of the buckled shapes (in the limit when y— ) is
smaller from the volume of unbuckled shapes (in the limit
when y<y,), and the difference between the two values of
the volume becomes smaller with the increase (in absolute
value) of the internal pressure. Note that the internal pressure
necessarily induces the increase of the stretching energy of
the shell. The effects of positive (outside) pressure on the
shell energies and shapes could not be studied with the
method presented in Sec. II B, since for some critical value
of the FvK number, depending on the magnitude of the ap-
plied pressure, the shell abruptly collapses, crumples, and the
numerical method chosen becomes unreliable for tracing this
effect.

Mean square aspherities of the shapes are shown in Fig.
10. It is clear that large internal pressures suppress the
change in aspherity in the buckling transition, but the transi-
tion is still observed within the region of pressures studied
here. Note that this is not a trivial finding since for p=
—-0.331€/R,, the enclosed shell volume for y=0.6 is 1.4
times larger from the volume that would be enclosed by the
shell without the applied pressure, yet the buckling transition
still survives.

VI. APPLICATION OF THE RESULTS TO VIRAL SHAPES

It is of use to scale the pressures studied in Sec. V to
circumstances that are relevant to viruses. To do this, an
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estimate of the elastic parameters of the viral coatings is
needed. The authors of Ref. [13] have suggested that the
ratio Y/« appropriate for viruses is about 1-2 nm™2. The
authors of Ref. [14] have taken a step further and they esti-
mate that the Young’s modulus of the viral coating is about
Y=10kzT/nm?. The scale of the stretching energy € is of the
same order of magnitude as Y [see Eq. (1) and the discussion
following it]; thus, I fix € to 10kzT/nm?. The radius of the
virus in its spherical (immature) form depends on the virus in
question. If one considers HK97 bacteriophage procapsid of
radius Ry=26 nm, the scale of pressure for this virus is
€/Ry=0.2kzT/nm>=1 657 000 Pa~ 16.4 atm. The highest
pressure studied (—0.331€/R,) would thus, in the case of
HK97 bacteriophage, be about 548 600 Pa=5.42 atm. It is
of interest to compare these numbers to those obtained in
Ref. [26]. In studying the energetics of DNA inserted in the
preformed viral capsids, the authors have found [26] that for
a virus of radius 27.5 nm, the pressure that the fully packed
DNA genome (whose length is 16.5 wm) exerts on its walls
is about 30—45 atm. For a virus of such radius, the pressure
scale introduced in this article should be about €/R,
~15.5 atm, assuming the same value for € as for the HK97
bacteriophage. The highest pressure studied in this work
would then correspond to 5.1 atm, about six times smaller
from the pressure acting in the filled viral capsid of the virus
studied in Ref. [26]. Similar estimate for the pressure that the
fully loaded genetic material exerts on the viral coating was
obtained in Ref. [27]. For ¢29 bacteriophage, the authors
estimate that the internal pressure is about 60 atm, in agree-
ment with previous estimates from Ref. [28]. There is an
obvious agreement in the literature concerning the internal
pressures in mature viral capsids. However, for such large
internal pressures, and assuming that e=10kgT/ nm?2, the
mean square aspherities of buckled shapes (i.e., mature vi-
ruses) should be very small (see Fig. 10), far smaller than
observed, e.g., for mature HK97 capsid (0.00116). On the
other hand, one could insist on the application of the present
model to viruses and use the results presented here to rees-
timate the value of the Young’s modulus of the coating of a
mature virus. In other words, the aim is to scale the internal
pressures to the values obtained in previous studies and to
obtain new estimates for elastic parameters of mature viral
capsid. I again concentrate on the HK97 virus. Assuming that
the capsid’s elastic parameters are in the region where the
mean square aspherity saturates, the internal pressure should
be about 0.045€¢/R,, (see Fig. 10; this internal pressure results
in final aspherity that is about the same as in mature HK97
virus). Equating this with the estimated internal pressure of
about 40 atm [29] and using Ry=26 nm, one obtains that for
the mature HK97 virus, ¥~ 650kgT/nm? (2.7 N/m), about
60 times larger from the estimate of Ref. [14], but closer to
the alternative (discarded) estimate of Ref. [14], which was
about Y=~1 N/m. The bending rigidity should then be
smaller than about 1.8 X 107'? J (y> 10, see Fig. 10). Divi-
sion of the two-dimensional Young’s modulus obtained in
this study with the thickness of the mature HK97 viral shell
(about 2.5 nm [17,18]) yields an approximate prediction for
the 3D (bulk) Young’s modulus (Y3p) of the viral protein
shell. This procedure gives Y;p=1.1 GPa, which is about
40 % smaller from the value found in the experimental study
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of the elastic response of empty viral shells of ¢$29 bacte-
riophage with the use of atomic force microscopy (AFM)
(1.8 GPa) [30]. Note, however, that the results obtained here
relate to elastic properties of mature (filled) viral shells,
while the experimental results are performed on empty
capsids. Nevertheless, the results obtained here suggest that
the Young’s modulus of the viral coating may be signifi-
cantly larger than predicted in Ref. [14] and closer to the
value discarded by authors of that work. The alternative
value of Young’s modulus was discarded by authors of Ref.
[14] on the basis of Monte Carlo simulations of a coarse-
grained capsomer [3] model which yielded that the bending
rigidity « should be of the order of the capsomer-capsomer
cohesive binding energy. Thus, the results presented here
may point toward improvements in the coarse-grained model
of viruses.

Pouring a liquid into a spherical elastic shell (immature
capsid), or applying a pressure to it from the inside will not,
of course, change its shape to a more aspherical one. What
ought to happen “during pouring” (the insertion of a genetic
material) is a dynamical process that changes the elastic
properties of a capsid, i.e., that effectively increases its FvK
number. Only then will a mature capsid be more aspherical
than the precursor capsid. Thus, the results presented in this
article cannot provide the full physical description of virus
maturation. Nevertheless, if the change of the capsid shape is
influenced by the fact that the capsid is filled with the genetic
material (in the most trivial sense of finite volume occupa-
tion or simulated by the constant internal pressure), the re-
sults should prove useful. The presented results essentially
show that if there is a process that increases the effective
FvK number of the capsid, the volume conservation con-
straint or finite internal pressure that may be imposed by the
inserted genetic material is not strong enough to destroy the
signatures of the buckling transition, and the mature shell
will be more aspherical from its precursor shell, although to
lesser amount than could be concluded from the study of
buckling transition in empty shells (see Fig. 6). Now, what
could be the process that induces the change of elastic prop-
erties of the viral capsid?

The proposition put forth by Lidmar et al. [13] is that the
FvK number changes during the maturation due to the in-
crease of radius (R) and decrease of effective thickness of the
protein coating, d. According to Ref. [13], if one approxi-
mates a shell by a uniform isotropic elastic medium of thick-
ness d with the Poisson ratio v, then its effective FvK num-
ber should be about

y=12(1 - 1) (R/d)>. (11)

If one additionally assumes that the volume of the capsid
protein material (not the volume enclosed by the capsid) re-
mains the same and that v; does not change during matura-
tion, then the FvK numbers before () and after (y,) the
transition for the HK97 capsid studied in Ref. [13] should be
y5=~630 and 7y,=1480. This predicts a noticeably more
spherical shape of the immature capsid. It has been experi-
mentally observed that the capsid proteins rearrange them-
selves significantly during maturation [24]. To a lesser ex-
tent, the reorganization involves the refolding of the protein
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FIG. 11. (Color online) Mean square aspherities of 7=7 shells
as a function of bending modulus. The calculations for three difter-
ent values of the lattice constant a are displayed (a=1.0, full line;
a=1.2, dashed line; and a=1.4, dotted line). The three shapes char-
acterized by these three lattice constants are plotted for k=0.0458.

itself, but its main consequence is a rearrangement (transla-
tions and rotations) of the proteins to another configuration
in which the contacts between capsomers change and the
capsomers adopt a more symmetrical shape, which also re-
sults in a smoother shape of the capsid. This rearrangement
has been studied in detail for bacteriophage HK97 and P22
capsid in Refs. [17,18], respectively. These experimental
findings suggest that one should study the effects of a change
of the lattice constant, a, on the shape of the minimum en-
ergy shells. This was done in Fig. 11. The calculations were
intentionally performed for small value of T number (T=7,
which corresponds to the symmetry of HK97 capsid), al-
though one should keep in mind that the Hamiltonian in Eq.
(1) was constructed with the idea of treating the continuous
(large T number) structures for which it makes sense to
speak about elastic parameters of protein sheets, and its pre-
dictions for small 7" numbers should not be directly tran-
scribed to viral shapes. Nevertheless, the form in which the
Hamiltonian is written [Eq. (1)] suggests its “microscopic”
interpretation. These subtleties were discussed in Refs.
[13,14]. The calculations in Fig. 11 were performed for three
values of the lattice constant, a=1, a=1.2, and a=1.4. The
scale of the elastic energy was kept constant (e=1), and the
bending modulus « was changed. The mean square aspheri-
ties were plotted as a function of «. The constraint of fixed
enclosed volume was not implemented and p=0. Note that in
the critical region of values of « (onset of the buckling tran-
sition), the shapes with very different aspherities can be pro-
duced by simply changing the lattice parameter a and keep-
ing all other parameters of the Hamiltonian fixed (for the
shapes plotted in Fig. 11, the bending modulus was «
=0.0458). This numerical experiment reproduces the experi-
mental findings that the (i) mature viral shapes enclose larger
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volume, and (ii) mature viral shapes are more facetted from
their precursor shapes. Of course, it still does not provide
any clues with respect to the process that drives the transition
to larger lattice constant.

VII. SUMMARY AND CONCLUSIONS

The buckling transition of shells with 12 pentagonal dis-
clinations situated in vertices of an icosahedron was studied.
The constraint of the fixed enclosed volume was introduced
and its effect on the shell shapes and energies explored. The
shell shapes and buckling transition were also investigated in
cases when the constant internal pressure acts on the shell. It
was found that the buckling transition survives the volume
constraint, at least for the enclosed volumes that are not too
large. The buckled shapes are found to be less aspherical
than the ones obtained without the volume constraint. Simi-
lar conclusions were reached for shells subjected to constant
internal pressure. For pressures that are not too large (about
p=-0.3€/R,), the buckling transition survives and the buck-
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led shapes are significantly more aspherical from the ones in
the region of small FvK numbers. If one transcribes the re-
sults of the study of shells under constant internal pressures
to the circumstances appropriate to viruses [27,28], an esti-
mate of the two-dimensional Young’s modulus of the coating
can be obtained, and for mature HK97 virus, the value of
Y=2.7 N/m was found. This also puts an upper limit on
bending rigidity, x=1.8x10""J. For the bulk (3D)
Young’s modulus of the viral coating material, this yields a
value of about Y;p=1.1 GPa, which is close to the value
found in experimental studies of elastic response of empty
$29 bacteriophage shells [30].

Whether the fixed enclosed volume of the shell, or the
constant internal pressure is a realistic model of the (mature)
viral shells filled with the genetic material is, of course,
questionable, and alternative scenarios for the virus matura-
tion, based again on the triangulated elastic shells, have been
proposed in Sec. VI. In any case, the results of this article
should be of use in extending the approaches of Refs. [13,14]
toward more realistic modeling of viral shapes.
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